Creatine increases hippocampal Na+,K+-ATPase activity via NMDA–calcineurin pathway
نویسندگان
چکیده
Achievements made over the past few years have demonstrated the important role of the creatine and phosphocreatine system in the buffering and transport of high-energy phosphates into the brain; however, the non-energetic processes elicited by this guanidine compound in the hippocampus are still poorly understood. In the present study we disclosed that the incubation of rat hippocampal slices with creatine (10mM) for 30 min increased Na(+),K(+)-ATPase activity. In addition, intrahippocampal injection of creatine (5 nmol/site) also increased the above-mentioned activity. The incubation of hippocampal slices with N-methyl-d-aspartate (NMDA; MK-801, 10 μM) and NMDA Receptor 2B (NR2B; ifenprodil, 3 μM) antagonists but not with the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA)/kainate antagonist (DNQX, 10 μM) and nitric oxide synthase inhibitor (NOS; l-NAME, 100 μM), blunted the effect of creatine on Na(+),K(+)-ATPase activity. Furthermore, the calcineurin inhibitor (cyclosporine A, 200 nM) as well as the Protein Kinase C (PMA, 100 nM) and Protein Kinase A (8-Br-cAMP, 30 μM) activators attenuated the creatine-induced increase of Na(+),K(+)-ATPase activity. In addition, the incubation of hippocampal slices with creatine (10mM) for 30 min increased calcineurin activity. The results presented here suggest that creatine increases Na(+),K(+)-ATPase activity via NMDA-calcineurin pathway, proposing an putative underlying non-energetic role of this guanidine compound. However, more studies are needed to assess the contribution of this putative alternative role in neurological diseases that present decreased Na(+),K(+)-ATPase activity.
منابع مشابه
O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation
Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...
متن کاملChelerythrine increases Na-K-ATPase activity and limits ischemic injury in isolated rat hearts.
Myocardial ischemia results in an increase in intracellular sodium concentration ([Na]i), which may lead to cellular injury via cellular swelling and calcium overload. Because protein kinase C (PKC) has been shown to reduce Na-K-ATPase activity, we postulated that pharmacological inhibition of PKC would directly increase Na-K-ATPase activity, reduce [Na]i during ischemia, and provide protection...
متن کاملSodium influx pathways during and after anoxia in rat hippocampal neurons.
Mechanisms that contribute to Na+ influx during and immediately after 5 min anoxia were investigated in cultured rat hippocampal neurons loaded with the Na+-sensitive fluorophore sodium-binding benzofuran isophthalate. During anoxia, an influx of Na+ in the face of reduced Na+,K+-ATPase activity caused a rise in [Na+]i. After the return to normoxia, Na+,K+-ATPase activity mediated the recovery ...
متن کاملInvolvement of cAMP/cAMP-dependent protein kinase signaling pathway in regulation of Na+,K+-ATPase upon activation of opioid receptors by morphine.
The depolarization of neurons induced by impairment of Na+,K+-ATPase activity after long-term opiate treatment has been shown to involve the development of opioid dependence. However, the mechanisms underlying changes in Na+,K+-ATPase activity after opioid treatment are unclear. The best-established molecular adaptation to long-term opioid exposure is up-regulation of the cAMP/cAMP-dependent pr...
متن کاملBioenergetics of adaptation to a salinity transition in euryhaline teleost (Oreochromis mossambicus) brain.
Freshwater (FW) teleosts are capable of acclimating to seawater (SW) following such a transfer from FW. However, their osmoregulating mechanisms are still unclear, particularly those in the brain. The present study was conducted to examine acute changes that occur in brain Na(+)-K(+)-ATPase activity, creatine kinase (CK) activity, creatine, creatinine contents, and ATP levels of tilapia (Oreoch...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain Research Bulletin
دوره 88 شماره
صفحات -
تاریخ انتشار 2012